The Geometry of Interest Rate Risk

[Maio-de Jong (2014)]
World Finance Conference, Buenos Aires, Argentina, July $23^{\text {rd }} 2015$

Michele Maio

uGly Duckling
m.maio@uglyduckling.nl

Slides available at: http://uglyduckling.n/WFC2015

Bienvenidos a todos..

Who we are

http://www.uglyduckling.nl

Slides available at: http://uglyduckling.n/WFC2015

Background

- Topic: managing interest rate risk for linear (i.e. no options) fixed-income products
- Tools:
- Yield Curve
- Sensitivity: PV01 \& IV01
- Hedging $=$ Product \otimes Curve
- Note: our approach is fully analytic!
- analytic vs numerical

Yield Curve

- Possibilities:
- Parametric fitting (e.g. Nelson-SiegelSvenson)
- Interpolation
- Good features:
- some level of smoothness
- price back the market
- continuous and positive forward rates
- local construction method
- local hedge

- Original values

Nearest neighbour

- Curve determines the risk space

Product

- Fundamental Asset Price Formula (F.A.P.F.):
- the present value $(P V)$ of any product is equal to the sum of its discounted cash flows
- PV is used to compute sensitivities w.r.t.
- curve zero rates (PV01)
- curve instrument rates (IV01)
- How are PV01 and IV01 related?
- change of basis (Jacobian)

Hedging

- Use either PV01 or IV01 to determine hedging (replicating) positions
- Will the positions be the same?
- Recall: curve determines the risk space
- Standard approach: perturbative, first order
- Need to hedge frequently if product has large convexity

Table of Content

- Set Up
- Zero Rates from Cash and Swap Instruments
- Interpolation
- Hedging
- Summary and Conclusions
uD

Set Up

Definitions |

- Curve Instruments Set \mathcal{I}
$\mathcal{I}=\left\{\operatorname{cash}_{2 \mathrm{w}}, \operatorname{cash}_{1 \mathrm{~m}}, \operatorname{cash}_{3 \mathrm{~m}}, \operatorname{cash}_{6 \mathrm{~m}}\right.$, swap $_{1 \mathrm{y}}$, swap $_{5 \mathrm{y}}$, swap $_{10 \mathrm{y}}$, swap $\left._{20 \mathrm{y}}\right\}$
- Curve Zero Nodes \mathcal{N}

$$
\mathcal{N}=\left\{\left(t_{1}, r_{1}\right),\left(t_{2}, r_{2}\right), \ldots,\left(t_{n}, r_{n}\right)\right\}
$$

- Bootstrap \mathcal{B}

$$
\mathcal{B}: \mathcal{I} \longrightarrow \mathcal{N}
$$

Definitions II

- Curve $\gamma \equiv \gamma_{\mathcal{N}}^{\mathrm{int}}: \mathcal{N} \longrightarrow \mathbb{R}$
- Interpolation dependent
- Discounts $\quad D(t)=e^{-\int_{0}^{t} r\left(t^{\prime}\right) d t^{\prime}} \quad D(t)=\left(\frac{1}{1+\frac{r}{n}}\right)^{-n t}$
- Curve dependent
- Product's intermediate cash flows are discounted with corresponding discount factors

$$
\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}
$$

- PV via F.A.P.F.

Definitions - Summary

$$
\mathcal{I} \xrightarrow{\mathcal{B}} \mathcal{N} \xrightarrow{\gamma} \mathbb{R}^{\gamma} \xrightarrow{D} \mathcal{D} \xrightarrow{F A P F} \mathbb{R}^{P V}
$$

Bump Curve Zero Rates \& PV01

- For linear product (i.e. no optionality), when bumping curve zero rates, linear approximation is sufficient:

$$
\delta P V(r)=\nabla P V \cdot \Delta r=\sum_{i} \frac{\partial P V}{\partial r_{i}} \delta r_{i}
$$

- If only one node is bumped and the bump size is 1 bp , then we find the standard PV01:

$$
P V 01_{i}=\frac{\partial P V}{\partial r_{i}} \delta r_{i}
$$

Bump Instrument Rate \& IV01

- For linear product (i.e. no optionality), when bumping instrument rates, linear approximation is sufficient:

$$
I V 01_{i}=P V\left(r\left(x_{i}+1 b p\right)\right)-P V\left(r\left(x_{i}\right)\right)
$$

- If only one instrument rate is bumped and the bump size is 1bp, then we define the IV01 as:

$$
I V 01_{i}=\frac{\partial P V}{\partial x_{i}} \delta x_{i}
$$

Computing the Derivatives

- PV

$$
P V=\sum_{c f} A_{c f} D\left(t_{c f}\right)
$$

- PV01

$$
\frac{\partial P V}{\partial r_{i}}=\sum_{c f} \frac{\partial P V}{\partial D_{c f}} \frac{\partial D_{c f}}{\partial r} \frac{\partial r}{\partial r_{i}}
$$

- IV01

$$
\begin{aligned}
& \frac{\partial P V}{\partial x_{i}}=\sum_{j} \frac{\partial P V}{\partial r_{j}} \frac{\partial r_{j}}{\partial x_{i}}=\sum_{c f} \frac{\partial P V}{\partial D_{c f}} \frac{\partial D_{c f}}{\partial r} \sum_{j} \frac{\partial r}{\partial r_{j}} \frac{\partial r_{j}}{\partial x_{i}}
\end{aligned}
$$

Observations

- $\frac{\partial r_{j}}{\partial x_{i}}$ represents the bootstrap on the set \mathcal{I};
- $\frac{\partial r}{\partial r_{j}}$ represents interpolation from the set \mathcal{N};
- $\frac{\partial D_{c f}}{\partial r}$ depends on the choice of discounting convention;
- $\frac{\partial P V}{\partial D_{c f}}$ is related to the product only via its PV.

Note: the first 3 items are curve properties!
Only the last item is a product feature, through its intermediate cash flows.

Zero Rates from Cash and Swap Instruments

The Jacobian

- Jacobian is a curve property!

$$
\begin{gathered}
\mathcal{J} \equiv \mathcal{J}_{x}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(r_{1}, r_{2}, \ldots, r_{n}\right)} \quad \Longleftrightarrow \quad \mathcal{J}_{k l}=\frac{\partial x_{k}}{\partial r_{l}} \\
\mathcal{J}^{-1}=\frac{\partial\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \quad \Longleftrightarrow \quad\left(\mathcal{J}^{-1}\right)_{l k}=\frac{\partial r_{l}}{\partial x_{k}}
\end{gathered}
$$

- Both the Jacobian and its inverse are lower triangular matrices
- Reasons: forward start and bootstrap

Cash

- Cash instruments are deposits: promise a pre-agreed (simply-compounded) interest over a pre-determined time on an initial invested amount
- s is the forward start of cash instrument
- $t=\tau+s$ is the location of the zero node in the curve
- τ is the maturity of the deposit

$$
D(s)=(1+x \cdot \tau) D(t) \quad x=\frac{1}{\tau}\left(\frac{D(s)}{D(t)}-1\right)
$$

- Note:
- $D(s)$ is typically associated with the first node, and is interpolation-dependent
- $D(t)$ is interpolation-independent, since t is the position of the node

Cash Example

- Consider 3 cash instruments

$$
\begin{aligned}
& D(s)=\left(1+x_{2 w} \cdot \tau_{1}\right) D\left(t_{1}\right) \\
& D(s)=\left(1+x_{1 m} \cdot \tau_{2}\right) D\left(t_{2}\right) \\
& D(s)=\left(1+x_{3 m} \cdot \tau_{3}\right) D\left(t_{3}\right)
\end{aligned}
$$

- Without doing any calculation, we can already say that the Jacobian is lower triangular with some zero entries

$$
\begin{array}{lll}
\frac{\partial x_{2 w}}{\partial r_{1}} \neq 0 & \frac{\partial x_{2 w}}{\partial r_{2}}=0 & \frac{\partial x_{2 w}}{\partial r_{3}}=0 \\
\frac{\partial x_{1 m}}{\partial r_{1}} \neq 0 & \frac{\partial x_{1 m}}{\partial r_{2}} \neq 0 & \frac{\partial x_{1 m}}{\partial r_{3}}=0 \\
\frac{\partial x_{3 m}}{\partial r_{1}} \neq 0 & \frac{\partial x_{3 m}}{\partial r_{2}}=0 & \frac{\partial x_{3 m}}{\partial r_{3}} \neq 0 .
\end{array}
$$

Swap

- (Interest rate) swap instruments are defined by the cashflows that are exchanged by the two parties.
- Argument similar to cash, but more complicated

$$
D(s)-D(t)=x \sum_{k=1}^{N_{c f}} \alpha_{k} D\left(t_{k}\right)
$$

$$
x=\frac{D(s)-D(t)}{\sum_{k=1}^{N_{c f}} \alpha_{k} D\left(t_{k}\right)}
$$

Swap Example

- As for cash, consider 3 swap

$$
\begin{aligned}
& x_{1 y}=\frac{D(s)-D\left(t_{1}\right)}{\sum_{k=1}^{N_{c f}} \alpha_{k} D\left(t_{k}\right)} \\
& x_{3 y}=\frac{D(s)-D\left(t_{2}\right)}{\sum_{k=1}^{N_{c f}} \alpha_{k} D\left(t_{k}\right)} \\
& x_{5 y}=\frac{D(s)-D\left(t_{3}\right)}{\sum_{k=1}^{N_{c f}} \alpha_{k} D\left(t_{k}\right)}
\end{aligned}
$$

- Without doing any calculation, we can already say that the Jacobian is lower triangular with all the entries generically non-zero

$$
\begin{array}{lll}
\frac{\partial x_{1 y}}{\partial r_{1}} \neq 0 & \frac{\partial x_{1 y}}{\partial r_{2}}=0 & \frac{\partial x_{1 y}}{\partial r_{3}}=0 \\
\frac{\partial x_{3 y}}{\partial r_{1}} \neq 0 & \frac{\partial x_{3 y}}{\partial r_{2}} \neq 0 & \frac{\partial x_{3 y}}{\partial r_{3}}=0 \\
\frac{\partial x_{5 y}}{\partial r_{1}} \neq 0 & \frac{\partial x_{5 y}}{\partial r_{2}} \neq 0 & \frac{\partial x_{5 y}}{\partial r_{3}} \neq 0 .
\end{array}
$$

$u D$

Interpolation

Where needed?

- For curve construction
- In PV01 and IV01 calculations $\frac{\partial r(t)}{\partial r_{i}}$
- Curve property: defines the smoothness of the curve
- We can compute the derivative exactly for many interpolation methods:
- linear
- monotone-preserving cubic splines
- Bessel-Hermite cubic spline
- forward monotone convex spline (HW)
uD

Hedging

Approach

- Purpose:
- Replicate a portfolio such that fluctuations in the portfolio due to fluctuations in the underlying rates are balanced by fluctuations in the hedging instruments
- The hedged portfolio is then immune to small changes in the yield curve
- Various methods:

1. Fancier method: waves or scenario method

- allows to separate risk of yield curve from instruments;
- desirable when curve instruments are not the same as hedging instruments

2. Standard method: bumping

- our approach (we use the same set of instruments)

Some Notation

- \mathcal{J} is the Jacobian introduced earlier
- Ψ will denote the matrix whose columns are the IV01 of the curve instruments \mathcal{I}
- Ψ_{i}, with $i=1, \ldots, n$ will denote the columns of Ψ
- ψ will denote the IV01 of an arbitrary product that we want to hedge
- Π will denote the matrix whose columns are the PV01 of the curve instruments \mathcal{I}
- Π_{i}, with $i=1, \ldots, n$ will denote the columns of Π
- ξ will denote the PV01 of an arbitrary product that we want to hedge
- ω will denote the vector with the hedging position

Sensitivities

- Recall:
- PV01

$$
P V 01_{i}=\frac{\partial P V}{\partial r_{i}} \delta r_{i}
$$

- IV01

$$
I V 01_{i}=\frac{\partial P V}{\partial x_{i}} \delta x_{i}
$$

- related by the Jacobian

$$
P V 01=\mathcal{J}^{T} \cdot I V 01
$$

IV01 representation

- Curve instruments IV01 matrix (upper triangular, due to bootstrap)

$$
\Psi \equiv \Psi(\mathcal{I})=\left(\begin{array}{c|c|c|c}
\vdots & \vdots & \vdots & \vdots \\
\Psi_{1} & \Psi_{2} & \ldots & \Psi_{n} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right)=\left(\begin{array}{c|c|c|c}
\psi_{11} & \psi_{12} & \ldots & \psi_{1 n} \\
0 & \psi_{22} & \ldots & \psi_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \psi_{n n}
\end{array}\right)
$$

- Product IV01 vector

$$
\psi=\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{n}
\end{array}\right), \quad \psi_{i} \in \mathbb{R}
$$

- Hedging: product's IV01 is a linear combination of the matrix column vectors

$$
\psi_{i}=\sum_{j=1}^{n} \Psi_{i j} \omega_{j}, \quad \omega_{j} \in \mathbb{R} \quad \Longleftrightarrow \quad \psi=\Psi \cdot \omega
$$

- Solution for the positions:

$$
\omega=\Psi^{-1} \cdot \psi
$$

PV01 in IV01 representation

- Compute: curve instruments PV01 matrix

$$
\Pi=\mathcal{J}^{T} \cdot \Psi
$$

- Product PV01 vector

$$
\xi=\left(\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\vdots \\
\xi_{n}
\end{array}\right), \quad \xi_{i} \in \mathbb{R}
$$

- Then we can derive the relation

$$
\xi=\Pi \cdot \omega
$$

- Summarising diagram

$$
{\underset{J}{\mathcal{J}^{T}}}_{\substack{\psi \\ \xi}}^{\psi} \stackrel{\Psi^{-1}}{ } \omega
$$

PV01 representation

- We can repeat the same procedure, but starting from the curve and product's PV01
- We will find new positions $\hat{\omega}=\hat{\Pi}^{-1} \cdot \xi$
- Then we can compute the relation to the IV01, which will be given by the diagram

$$
\underset{\psi}{\xi} \stackrel{\mathcal{J}}{ }_{\boldsymbol{\uparrow}}^{\stackrel{\hat{\Pi}^{-1}}{\longrightarrow}} \hat{\omega}=\left(\mathcal{J}^{T}\right)^{-1} \cdot \hat{\Pi}
$$

- And we can derive the IV01 for curve and product

Gluing the diagrams

- But recall: PV01 and IV01 are not independent, but related by the Jacobian

$$
\hat{\Pi}=\mathcal{J}^{T} \cdot \Psi
$$

- This allows us to simplify and finally find:

$$
\hat{\omega}=\omega \quad \hat{\Pi}=\Pi \quad \hat{\Psi}=\Psi
$$

Hedging positions are strategy-invariant!

Risk spaces (range of the matrices) are the same!

$$
\mathcal{R}_{\Pi}=\mathcal{R}_{\Psi}
$$

uD

Summary and Conclusions

Summary

- Bootstrapping prices back the market
- PV01 and IV01 are related by a change of basis
- Risk matrices span the whole risk space
- In this set up, hedging instruments and curve instruments are the same
- No numerical calculations

Possible future extensions

- From linear product to non-linear (options)
- From first order to higher order
- From single curve to multi curve
- Curve instruments are not the same as hedging instruments
- Hedging with waves

Thank you!

Michele Maio

m.maio@uglyduckling.nl

Slides available at: http://uglyduckling.n/WFC2015

