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Abstract

This paper extends the generalized procedure for building trees for short rates
by Hull & White. A generalization for any mean and standard deviation of the
underlying short rate model is presented. In addition we review the methodolo-
gies for constructing lattice models and give a step-by-step explanation on how to
construct trinominal trees. We apply the formalism to some explicit examples of
various complexity.
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1 Introduction

In a recent contribution Hull & White [1] generalize their previous work on short rate
models using trinomial trees [2]-[3] to a wide class of models where the volatility is an
arbitrary rate-dependent quantity and the drift is allowed to have a time dependency.
However such time dependence is not completely arbitrary, since in their set-up the drift
can be written as the sum of a time-dependent and a rate-dependent function.

In this paper we will present the most general framework for evaluating short rate
models. Specifically we present a framework to deal with all short rate models of the
form

dr = F (r, t)dt+G(r, t)dZ(t) ,

for generic functions F and G, which can in principle contain both time and rate depen-
dencies.

In most cases analytical formulas for discounts and (option) prices will not be avail-
able. For those cases one must resort to numerical methods. Here a lattice construction
algorithm is presented that can be used for (arbitrage free) pricing for any specification
of F and G.

The fundamental insight is that there exist a function x = f(r) so that

dx = H(x, t)dt+ dZ.

This implies that in general we can construct a lattice for x using a corresponding function
H which depends on the given model specifications.

Once the lattice has been constructed, the parameters of F and G need to be taken
in such a way that the model prices the market. To do this we present a pricing function
that aims to match the spot yield curve and cap volatility in the market. The way this
is achieved is illustrated using some explicit choices for F and G.

2 Generalized Continuous Short Rate Model

We consider the following set up for our short rate process:

dr = F (r, t)dt+G(r, t)dZ(t) (1)

Equation 1 generalizes the set up used by Hull & White [1] (the latter will be reviewed
in section 3.2.1). We define the Uhlenbeck-Ornstein process [4] for x as

dx

dr
=

1

G(r, t)
(2)

or equivalently

x = f(r) =

∫ r

c

1

G(r′, t)
dr′ . (3)

Using Ito for the process dx we find:

dx =

[∫
∂

∂t

(
1

G(r′, t)

)
dr′ +

F (r, t)

G(r, t)
− 1

2

∂G(r, t)

∂r

]
dt+ dZ(t). (4)
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Note that we have moved the partial time-derivative inside the integral sign: for this to
be allowed it is enough that the integrand, in this case the function G−1, is continuous
and differentiable and the integration set is finite1.

To ease notation, we introduce

H(x, t) = −
∫

Ġ(r′, t)
G2(r′, t)

dr′ +
F (r, t)

G(r, t)
− 1

2
G′(r, t) , (8)

where

Ġ(r, t) ≡ ∂G

∂t
and G′(r, t) ≡ ∂G

∂r
. (9)

So equation (4) reduces to
dx = H(x, t)dt+ dZ(t). (10)

Note that we can compute r from x in H(x, t) as

r = f−1(x) (11)

which follows directly from (3).
Next we need the mean and variance, or first (m1) and second (m2) moments of the

process of x. We recover the process for x by taking the integral of equation (10):

x(s) = x(s0) +

∫ s

s0

H(x(s′), s′)ds′ +
∫ s

s0

dX(s) (12)

We can now compute the first moment by taking the expectation

m1 = E [x(t)|x(s)] ,

where t > s. We find:

m1 = x(s) +

∫ t

s

H(x(s′), s′)ds′ . (13)

The second moment is then given by

V [x(t)|x(s)] = m2
1 + (t− s) . (14)

1More generally, using the definition of derivative, for any function f(x, t) we can write:

∂

∂t

∫ x2

x1

f(x, t) = lim
h→0

∫ x2

x1

(
f(x, t+ h)− f(x, t)

h

)
. (5)

Recalling Lebesgue’s Dominated Convergence Theorem, as long as for all h the integrand is bounded
by an integrable function, we can move the limit sign inside the integral. This is always the case for
continuous and differentiable functions on a finite set. In fact, it is easy to prove that∣∣∣∣f(x, t+ h)− f(x, t)

h

∣∣∣∣ ≤ max
x,t

∣∣∣∣∂f∂t
∣∣∣∣ = M < +∞ . (6)

Proof: using the Lagrange form of the Taylor remainder at order one, there exists a θ ∈ [0, 1] such that
the following relations hold∣∣∣∣f(x, t+ h)− f(x, t)

h

∣∣∣∣ =

∣∣∣∣∂f∂t (x, t+ θh)

∣∣∣∣ ≤ max
t

∣∣∣∣∂f∂t
∣∣∣∣ ≤ max

x,t

∣∣∣∣∂f∂t
∣∣∣∣ = M < +∞ . (7)
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3 Discrete Framework

3.1 Introduction

For most model specifications it will not be possible to compute analytic bonds and
option prices, hence we must resort to numerical methods. Hull & White suggest a
lattice building approach in [1, 2, 3]. We will do the same here only using a more generic
specification of the short rate model. We will first derive the discretization for finite
difference scheme (section (3.2)). The construction of the lattice for dx will be discussed
in details later in section 3.3.

3.2 Finite Difference set up

In this section we will review the set up of Hull and White [1]. First we will recover the
result from [1] (section 3.2.1). Then we will derive the same result for the generalized
case given by equation (1) (section 3.2.2). Following most of the literature, our tree will
be defined in terms of nodes labelled by a time coordinate t and a space coordinate x,
both of which assume discrete values. Starting at time t0 = 0, all the subsequent time
values will be denoted by ti = i∆t, i ∈ N, for some small -but finite- increment ∆t.
Similarly, the discrete x-values will be denoted by xj , j ∈ [jd, ju], where jd and ju are
the lower and upper bound for the index j. For each given time ti, many xj values are
possible. Hence, each node will be uniquely fixed in terms of its coordinate (ti, xj), or
more compactly (i, j).

3.2.1 Hull-White set up

In the set up of Hull and White, the starting point is the process

dr = [θ(t) + F (r)] dt+G(r)dZt , (15)

for some functions θ, F and G. Then one changes to the new process

x = f(r) ≡
∫

dr

G(r)
⇐⇒ df

dr
=

1

G(r)
(16)

which satisfies
dx = H(x, t)dt+ dZt , (17)

with

H(x, t) =
θ(t) + F (r)

G(r)
− 1

2
G′(r) (18)

(the prime denotes derivative with respect to r).
The first moment at time ti+1 can now be written as

m1 = f(rj + δrj) . (19)

One way of computing m1 is to use the x-process in its finite version:

xj+1 = xj +

∫ ti+1

ti

H(xj , ti)dt+ (Zti+1
− Zti) . (20)
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Hence

m1 ≡ E (xj+1|Ft) = xj +

∫ ti+1

ti

H(xj , ti)dt , (21)

which is equal to

m1 = xj +H(xj , ti)∆t

= f(rj) +
df

dr

∣∣∣∣
rj

G(rj)H(xj , ti) ·∆t

= f (rj +G(rj)H(xj , ti) ·∆t)

= f

(
rj +

[
θ(ti) + F (rj)−

1

2
G(rj)G

′(rj)

]
·∆t

)
, (22)

for small ∆t and the equality sign holds up to order O
(
(∆t)2

)
. Here we use the fact that

the equation in the second step is of the same shape as the first order Taylor expansion if
we consider df

dr at the point rj , since f(rj + δrj) = f(rj) + f ′(rj)δrj +O(δr2
j ). By virtue

of equation(14) for the variance we find

m2 ≡ V (xj+1|Ft) = m2
1 + ∆t. (23)

Another way to computem1 is to start directly from δrj and integrate the infinitesimal
r-process:

δrj =

∫ ti+1

ti

drt =

∫ ti+1

ti

[θ(t) + F (rt)] dt+

∫ ti+1

ti

G(rt)dZt . (24)

At order O
(
(∆t)2

)
, the first contribution is simply

∫ ti+1

ti

[θ(t) + F (rt)] dt = [θ(ti) + F (rti)] ·∆t+O
(
(∆t)2

)
. (25)

To compute the second contribution we have to do more work:

Lemma 3.1. The following relation holds true:
∫
G(rt)dZt = −1

2

∫
G(rt)G

′(rt)dt . (26)

Proof. Recall that
∂rt
∂Zt

= G(rt) (27)

and hence
∂2rt
∂Z2

t

=
∂G(rt)

∂Zt
=
∂G

∂rt

∂rt
∂Zt

= G′(rt)G(rt) . (28)

Then, using Ito, we have:
∫
G(rt)dZt =

∫ (
∂rt
∂Zt

)
dZt

=

∫ [
drt − dt

∂rt
∂t
− 1

2

∂2rt
∂Z2

t

dZ2
t

]

=

∫
drt −

∫
dt
∂rt
∂t
− 1

2

∫
∂2rt
∂Z2

t

dt

= −1

2

∫
G′(rt)G(rt)dt , (29)
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which is what we wanted to show.

Now, going back to eq. (24), we have

δrj =

[
θ(ti) + F (rj)−

1

2
G′(rj)G(rj)

]
·∆t+O

(
(∆t)2

)
, (30)

which is the same result that we have computed in (22).

3.2.2 Generalized set up

For our convenience let us recall the main definitions:

drt = F (rt, t)dt+G(rt, t)dZt (31)

xt = f(rt, t) =

∫
drt

G(rt, t)
⇐⇒ df

dr
=

1

G(rt, t)
(32)

dxt = H(xt, t)dt+ dZt (33)

where the function H(xt, t) is:

H(xt, t) = −
∫ rt Ġ(rt, t)

G2(rt, t)
dr +

F (rt, t)

G(rt, t)
− 1

2
G′(rt, t) . (34)

Here the first term with the integral comes from the partial derivative of f with respect
to t. Moreover we use the notation:

Ġ(r, t) ≡ ∂G

∂t
and G′(r, t) ≡ ∂G

∂r
. (35)

The first approach to compute the moment m1 is to start from the integrated x-
process:

xj+1 = xj +H(xj , ti)∆t+ (Zti+1
− Zti) (36)

and hence

m1 ≡ E (xj+1|Fti)
= xj +H(xj , ti)∆t

= f(rj , ti) +
∂f

∂r

∣∣∣∣
(rj ,ti)

(
F (rj , ti)−

1

2
G(rj , ti)G

′(rj , ti)

)
∆t+

∂f

∂t

∣∣∣∣
(rj ,ti)

∆t

= f

(
rj +

[
F (rj , ti)−

1

2
G(rj , ti)G

′(rj , ti)

]
∆t, ti + ∆t

)

≡ f(rj + δrj , ti+1) , (37)

where equalities hold up to order O
(
(∆t)2

)
. Now the mean can be used to compute the

variance to be

m2 ≡ V (xj+1|Ft) = m2
1 + ∆t. (38)

The alternative approach is to start from the integrated r-process:

δrj =

∫ ti+1

ti

drt =

∫ ti+1

ti

[F (rt, t)dt+G(rt, t)dZt] . (39)
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The first term is straightforward while for the second we use again Lemma 3.1, which
readly extends also to this case where the function G has an explicit time dependence.
The final answer is

δrj =

[
F (rj , ti)−

1

2
G(rj , ti)G

′(rj , ti)

]
∆t , (40)

which is again true up to order O
(
(∆t)2

)
. This is the same as (37).

3.3 Lattice Construction

It follows from equation (10) that given the process dx one can retrieve any short rate
model that has the shape of (1) for given F and G via transformation functions. In this
chapter we will show how the process for dx can be constructed using a lattice approach.
There are a few of alternatives to produce the lattice, for example Daglish [5] or Vetzal
[6]. However, we will follow the framework provided by Hull and White here ([2, 7]). The
steps are reproduced to make this paper a complete review of the methodology. We will
consider a fixed grid for x. We will match the market by adjusting the drift of r. The
time step ∆t, can vary at each step.

3.3.1 Constructing the Lattice

To construct the lattice we must define an algorithm to compute the xj , jd and ju as in
section 3.2. We begin with x by taking the step size:

∆xi =
√

3∆ti (41)

The step size ∆xi can be chosen between
√

3∆ti
2 and

√
3∆ti as pointed out in [8]. Consider

x0 = f(r0), with r0 being the rate corresponding to the initial time step. At a given time
i∆ti at level j in the lattice node (i, j) we have

x = x0 + j∆xi (42)

Note that the value of x is not directly dependent on the time step, but only on the
level. The time step element is introduced indirectly via ĵ, which indicates the level of
the nodes at i+ 1. We have

(i, j)→
{

(i+ 1, ĵ + 1), (i+ 1, ĵ), (i+ 1, ĵ − 1)
}
,

with

ĵ = int

(
m1 − x0

∆xi
+

1

2

)
, (43)

where m1 is time dependent. Here ĵ is used to indicate the nodes that can be reached
in the next time step. Consider figure 1 for the most typical branching that can be
encountered. A general overview of all branching options is given in [2].

Consider the mean and variance of the lattice

m1 = pu

[
(ĵ + 1)∆xi + x0

]
+ pm

[
ĵ∆xi + x0

]
+ pd

[
(ĵ − 1)∆xi + x0

]
(44)

m2 = pu

[
(ĵ + 1)∆xi + x0

]2
+ pm

[
ĵ∆xi + x0

]2
+ pd

[
(ĵ − 1)∆xi + x0

]2
−m2

1 (45)
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4.3 Lattice Construction

It follows from equation 7 that given the process dx on can retrieve any short rate model
that has the shape of (1) for a given F and G via transformation functions. In this
chapter we will show how the process for dx can be constructed using a lattice approach.
There are a couple of alternative to producing the lattice

=== to add references
However, we will follow the frame work provided by Hull and White here. The steps

are reproduced here to make this paper a complete review of the methodology. We will
consider a fixed grid for x. We will math the market by adjusting the drift of r. The
time step �t, can vary each step.

4.3.1 The Constructing the Lattice

To construct the lattice we must define an algorithm to compute the xj , jd and ju in
chapter 4.2. We begin with x be taking the step size:

�xi =
p

3�t (36)

The step size �xi can be chosen between
p

3�t
2 and

p
3�t as pointed out in [2].

Consider x0 = f(r0), with r0 being the rate corresponding to the initial time step. At a
given time i�t at level j in the lattice node (i,j) we have

x = x0 + j�x (37)
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ĵ = int
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m1 � x0

�x
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1

2

◆
, (38)

where m1 is time dependent. Here ĵ is used to indicate the nodes that can be reached
in the next time step. Consider figure ??.

4.3.2 The Specific Case of No Mean Reversion

5 Some Examples

In this chapter we will recover some well known models to demonstrate the methodology.

5.1 Hull White

We consider the Hull White short rate model as presented in their paper [3] formula (3)

dr = [b(t) � ar] dt + �dZ(t) (39)

By taking
F (r, t) = b(t) � ar and G(r, t) = �

equation 1 becomes the Hull White model. Hence,

H(r, t) =
b(t) � ar

�
(40)
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Figure 1: Branching process

and the fact that
pm = 1− pu − pd . (46)

By inverting these relations we can derive the expressions for pu,pm and pd. They are:

pu =
∆t+ (m1 − x0 − ĵ∆xi)2

2∆x2
+
m1 − x0 − ĵ∆xi

2∆xi
(47)

pd =
∆t+ (m1 − x0 − ĵ∆xi)2

2∆x2
i

− m1 − x0 − ĵ∆xi
2∆xi

(48)

pm = 1− pu − pd (49)

These probabilities look the same as in the Hull White framework. However, the formulas
contain the mean and variance of the distribution (equation (44) and (45)) and those
differ for the Hull White setup. In the Hull White setup the first moment m1 is function
of rj , which is an explicit function of the level j of lattice and an implicit function of time
ti. For the general case we have m1(rj , ti), so that the i and j dependence is explicit.
The fact that the probabilities look the same in both frameworks is logical as in both
case they are taken to match mean and variance of process x using a lattice approach.

Using equations (47), (48) and (49), we can work out the the highest and lowest level
that the tree reaches at a given time step i. These quantities are simply a matter of
“book keeping”. For the generalized model (1) it still holds that all probabilities are
positive since ∆x =

√
3∆t and m1 − x0 − ĵ∆xi ≤ 1

2∆xi as pointed out in [1].
For a given time step, the Arrow Debreu prices (as described in [9]) can be computed

as

Qi,j =

ju(i−1)∑

k=jd(i−1)

Qi−1,kq(k, j) exp (−rk∆ti) (50)

where Q0,0 = 1 and the probability of moving from node (i− 1, k) to (i, j) is denoted by
q(k, j). This results in a discount at time i+ 1 of

Di+1 =

ju(i)∑

k=jd(i)

Qi,j exp (−rk∆ti) (51)

To price back the market we must find the Arrow Debreu prices so that the discounts
(51) match those found in the market. This matching is done by adjusting the mean
of short rate, respectively θ(t) in the Hull White set up (equation (15)) and F (rt, t) in

9



the generalized set up (equation (31)). Calibration methods are described in general in
[2, 3, 7, 10, 11]. More details on calibration of the Hull-White set up can be found in [1].
Here we will consider the same approach:

1. match discounts by adjusting drift F (rt, t)

2. find G(rt, t) that minimizes differences in option prices quoted in the market.

4 Some Examples

In this chapter we will recover some well known models to demonstrate the methodology.

4.1 Black Karasinski

We consider the Black Karasinski short rate model as presented in their paper [12] formula
(1)

d(ln r) = [b(t)− a ln r] dt+ σdZ(t) , (52)

where we restrict ourselves to the case where a and σ are constant. To bring this into
the form of eq. (1) we apply the coordinate transformation:

y = ln r and thus exp(y) = r .

Using Ito we find

dr = d exp(y) =

{
[b(t)− a ln r] exp(y) +

1

2
σ2 exp(y)

}
dt+ σ exp(y)dZ(t) . (53)

This can by rewritten as

dr = r

[
b(t)− a ln r +

1

2
σ2

]
dt+ σrdZ(t) (54)

The transformed function does fit (1) with

F (r, t) = r

[
b(t)− a ln r +

1

2
σ2

]

G(r, t) = rσ

resulting in

H(x) =
r
[
b(t)− a ln r + 1

2σ
2
]

rσ
− 1

2
σ .

Finally we find the transformation function to be

x = f(r) =

∫ r

c

1

G(r′, t)
dr′ =

ln r

σ
, where c=1

and
r = f−1(x) = exp(xσ).

Check A
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Based on the process of dx and transformation funtion f−1 we can recover the original
process for dr. Using Ito we find

dr =

[{
r
[
b(t)− a ln r + 1

2σ
2
]

rσ
− 1

2
σ

}
σr +

1

2
σr

]
dt+ σrdZ(t) . (55)

By reorganizing this equation we find

dr = r

[
b(t)− a ln r +

1

2
σ2

]
dt+ σrdZ(t) ,

which corresponds to the transformed Black Karasinski model that fitted our generalized
formula (1).

Check B
In the previous check A we recover the transformed Black Karasinski equation, but

actual we would like to recover the original equation as published. To do this, define:

f̂(x) ≡ ln r = xσ . (56)

Then

d ln r =

{
r
[
b(t)− a ln r + 1

2σ
2
]

rσ
− 1

2
σ

}
σdt+ σdZ(t) , (57)

which can be written as:

d ln r = [b(t)− a ln r] dt+ σdZ(t) .

We have now recovered the Black Karasinski equation as noted in (52).

4.2 Piece-Wise Model

The piece-wise model shows how the generalization can be used to create a regime shifting
model. Here a combination of Hull White, Squared Gaussian and Black Karasinski are
used. The Black Karasinski model is an elegant solution for dealing with high and
negative rates. The Hull White model gives well understood distribution of rates for the
middle of the lattice. To avoid too abrupt transitions (in terms of distribution) between
Black Karasinski and Hull White the Gaussian model is used.

The model is defined as follows:

drt = µ(rt, t)dt+ σh(rt)dZt , (58)

where µ(rt, t) is the drift and

h(r) =





c0r if r < r0

c11 if r0 ≤ r < r1

c2
√
r if r1 < r < r2

c3r if r2 ≤ r

(59)

In principle the volatility can be time-dependent, but we will consider it constant for
simplicity. To make h(r) continuous we set c3 = 1 and find c2 =

√
r2, c1 =

√
r1r2 and

11



c0 =
√
r1r2
r0

:

h(r) =





√
r1r2
r0

r if r < r0√
r1r2 if r0 ≤ r < r1√
r2
√
r if r1 ≤ r < r2

r if r2 ≤ r

(60)

The x-process is obtained as

xt = f(rt) =

∫ rt

c

dr′

G(r′, t)
=

1

σ

∫ rt

c

dr′

h(r′)
≡ I(rt)

σ
(such that f(c) = 0) . (61)

We use c = 1 so that there are no negative rates. We solve the integral

I(r) ≡
∫ r

1

dr′

h(r′)
(62)

in 4 parts:

I0(r) =

∫ r

1

r0√
r1r2

1

r′
dr′ =

r + 0√
r1r2

ln(r′)

∣∣∣∣
r

1

=
r0√
r1r2

ln(r) (63)

I1(r) =
r0√
r1r2

ln(r0) +

∫ r

r0

r0√
r1r2

dr′

=
r0√
r1r2

ln(r0) +
r′√
r1r2

∣∣∣∣
r

r0

=
r0√
r1r2

(ln(r0)− 1) +
r√
r1r2

(64)

I2(r) =
r0√
r1r2

(ln(r0)− 1) +
r1√
r1r2

+

∫ r

r1

1
√
r2

√
r′
dr′

=
r0√
r1r2

(ln(r0)− 1) +
r1√
r1r2

+ 2

√
r′√
r2

∣∣∣∣∣

r

r1

=
r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2

√
r√
r2

(65)

I3(r) =
r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2 +

∫ r

r2

1

r′
dr′

=
r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2 + ln(r′)|rr2

=
r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2 + ln

(
r

r2

)
(66)

so that

I(r) =





I0(r) if r < r0

I0(r) + I1(r) if r0 ≤ r < r1

I0(r) + I1(r) + I2(r) if r1 ≤ r < r2

I0(r) + I1(r) + I2(r) + I3(r) if r2 ≤ r

(67)

12



At the boundaries r1, r2 and r3 we find:

x1 ≡
f(r1)

σ
=
I1(r1)

σ
=

1

σ

(
r0√
r1r2

ln(r0)

)

x2 ≡
f(r2)

σ
=
I2(r2)

σ
=

1

σ

(
r0√
r1r2

(ln(r0)− 1) +

√
r1√
r2

)

x3 ≡
f(r3)

σ
=
I3(r3)

σ
=

1

σ

(
r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2

)

resulting in

f(r) =
1

σ





r0√
r1r2

ln(r) if r < r0

r0√
r1r2

(ln(r0)− 1) + r√
r1r2

if r0 ≤ r < r1

r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2
√
r√
r2

if r1 ≤ r < r2

r0√
r1r2

(ln(r0)− 1)−
√
r1√
r2

+ 2 + ln( rr2 ) if r2 ≤ r

(68)

and

r = f−1(x) =





exp
(√

r1r2
r0

σx
)

if x < x1
√
r1r2σx− r0(ln(r0)− 1)) else if x < x2(√
r2σx+

√
r1− r0√

r1
(ln(r0)−1)

2

)2

else if x < x3

r2 exp
(
σx− r0√

r1r2
(ln(r0)− 1) +

√
r1√
r2
− 2
)

else

(69)

Using eq. (34), the x-process satisfies

dxt = H(xt, t)dt+ dZt (70)

with

H(xt, t) =
F (rt, t)

G(rt, t)
− 1

2
G′(rt, t)

=
µ(rt, t)

σh(r)
− 1

2
h′(r)σ . (71)

4.3 The Modified Squared Damped Harmonic Oscillator

In this subsection we consider an example where the volatility depends explicitly on the
time. In order to find a proper candidate for the volatility, we assume the following
assumptions:

• it may have an oscillating behaviour

• on average it decreases in time

Later we will also need to fact that the volatility is always positive. In the following, we
will construct a volatility function that satisfies such assumptions.

One system that almost satisfies such assumptions is the damped harmonic oscillator.
The damped harmonic oscillator belongs to a wider class of systems that can all in

13



principle be used to pick different drift and diffusion terms in the stochastic differential
equation. In Appendix A we review the main properties of one-dimensional non-linear
dynamical systems and in particular in Theorem A.2 we recall an interesting result valid
for monotonic maps.

The damped harmonic oscillator is solution to the motion equation

ẍ+ νẋ+ ω2
0x = 0 . (72)

In principle, there might also be a driven force on the r..h.s., which produces very inter-
esting effects, such as resonances etc., but we will not consider it here. The solution to
such equation is of the form

x(t) ∝ exp(λt) , (73)

with λ satisfying the constraint λ2 + νλ+ ω2
0 = 0, which implies

λ = −ν
2
±
√
ν2

4
− ω2

0 . (74)

In the case of complex-conjugate exponents

λ = −ν
2
± iω , ω2 ≡ ω2

0 −
ν2

4
> 0 , (75)

the solution can be written as

x(t) = ae−
ν
2 t cos(ωt+ φ) . (76)

Here φ is the initial phase and a is the amplitude of the oscillator. This is the damped
harmonic oscillator.

In order to construct a sensible volatility function out of the damped harmonic
oscillator, we need to make a few adjustments. First,the positivity constraint sug-
gests us to consider the squared function y(t) ≡ x2(t). Secondly, regularity of the
H-function implies that the G-function must be non vanishing everywhere. This sug-
gest to shift the cosine by a strictly-positive amount b2 for some non-zero value of b,
z(t) = a2e−νt

[
cos2(ωt+ φ) + b2

]
.

In order to construct our volatility, we notice that the constant parameters can in
principle be functions of the random variable r. Hence, we will consider the following
choice for the G-function:

G(r, t) = a(r)2e−νt
[
cos2(ωt+ φ) + b2(r)

]
, (77)

where the functions a(r) and b(r) are required not to vanish for any value of r. The
derivative w.r.t. r is given by

G′(r, t) = 2a(r)a′(r)e−νt
[
cos2(ωt+ φ) + b2(r)

]
+ 2b(r)b′(r)a2(r)e−νt , (78)

while the derivative w.r.t. t is

Ġ(r, t) = −νG(r, t)− a2(r)e−νtω sin(2(ωt+ φ)) . (79)

These expressions can be used now to evaluate the H-function as

H(x, t) = −
∫

Ġ(r, t)

G2(r, t)
dr +

F (r, t)

G(r, t)
− 1

2
G′(r, t) . (80)
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Figure 2: This plot shows the standard damped harmonic oscillator x(t), the squared
damped harmonic oscillator y(t) and the modified squared damped harmonic oscillator
z(t). The parameters are: a = 1, b = 1, ν = 0.5, ω = 3, φ = 0.

Observe that the convergence of the integral in the previous formula for r → +∞
depends on the convergence of the two integrals:
∫ r

r0

dr
1

a2(r) (cos2(ωt+ φ) + b2(r))
and

∫ r

r0

dr
1

a2(r) (cos2(ωt+ φ) + b2(r))
2 .

(81)
We can distinguish two cases, depending on the function b(r):

• b(r) r→+∞−→ +∞:
in this case the relevant integrals are

∫ r

r0

dr
1

a2(r)b2(r)
and

∫ r

r0

dr
1

a2(r)b4(r)
; (82)

• b(r) r→+∞−→ constant
(the constant limit can also be arbitrarily small, as long as it is non-zero otherwise
the cosine will periodically vanish): in this case the only relevant integral is

∫ r

r0

dr
1

a2(r)
. (83)
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So, if convergence is an issue, these expressions fix constraints on the a(r) and b(r)
functions. These constrains are the following for the two cases:

• b(r) r→+∞−→ +∞:
when r → +∞, the functions a and b should behave as

a(r) ∼ rα− β2 and b(r) ∼ r β−α2 (84)

with both α, β > 1.

• b(r) r→+∞−→ constant
when r → +∞, the functions a should behave as

a(r) ∼ r α2 (85)

with α > 1, and no additional constraint on b(r).

5 Summary and Conclusions

In this paper we have considered a generalization of the Hull-White approach to tree
building in the case where both the drift and the diffusion terms in a stochastic differential
equation are time dependent.

The framework presented here is general in the sense of the functional form of short
rate models that can be used. However, it only allows for one factor models. In principal
multi-factor short rates models seem a feasible extension. Such an extension would pose
interesting further research.

One interesting application of short rate models is its embedded use in ALM2 models.
To integrate short rate models with the rest of the VAR model used for analysis one would
ideally like to have both risk neutral and real world interest rate risk scenario’s. The
methodology to realize has been described for specific models using the market prices of
risk (for example [13]).

Future research could deliver a method to acquire and estimate the market price of
risk for the generalized model presented here.

In this paper we have looked at a very specific example of time-dependent volatility
function, namely the MSDHO. We have also pointed out in the main body of the paper
(see also section A) that the damped harmonic oscillator is one of the situations that can
happen with non-linear dynamical systems. It would be interesting to address all the
other types of possibility in the future and their numerical implementations.

Finally, it would be useful to perform a numerical calculation of the methods described
above. When time-dependent drift and volatilities are considered, numerical calculation
might turn out to be trick to perform due to initial conditions and root-finding issues
when pricing back the market. We hope to report on this front soon in the future.
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A One dimensional maps

In this section we will put the damped harmonic oscillator into the larger context of
non-linear dynamical systems. We will restrict ourselves to the one-dimensional case.
The main reference is [14].

A one-dimensional non-linear dynamical system is defined by a map fλ

xt+1 = fλ(xt) , (86)

where λ is a parameter. To ease the notation, if not necessary, we will not write the
parameter subscript explicitly. Given an initial value x0, the orbits of the system are
given by

{x0, x1, x2, . . . } = {x0, f(x0), f2(x0), . . . } . (87)

One can define a fixed point or steady state or equilibrium state xeq as the point that
satisfies

f(xeq) = xeq . (88)

A fixed point is locally stable if changing by a little bit the initial condition x0 in a
small interval of xeq the resulting orbit converges to f(xeq):

lim
n→+∞

fn(x0) = xeq with x0 ∈ (xeq − ε, xeq + ε) . (89)

A fixed point is globally stable if the limit holds for any x0.
A fixed point is unstable if changing by a little bit the initial condition x0 in a small

interval of xeq the resulting orbit diverges away from xeq:

|fn(x0)− xeq| > ε for some n > 0 . (90)

The following theorem is true:

Theorem A.1. If xeq is a fixed point of the dynamical system xt+1 = f(xt), then

• if |f ′(xeq)| < 1, then xeq is locally stable

• if |f ′(xeq)| > 1, then xeq is locally unstable

Here the unit value on the r.h.s. is the slope of the function f(x) = x. The four
typical cases are the following:

• 0 < f ′(xeq) < 1: stable and monotonic convergence

• f ′(xeq) > 1: unstable and monotonic divergence

• −1 < f ′(xeq) < 0: stable and damped oscillations

• −1 < f ′(xeq) < 0: unstable and undamped oscillations

One can also define a periodic point x with period k as a fixed point of the map
fk. The orbits of a periodic point have exactly k elements, {x, f(x), f2(x), . . . , fk−1(x)},
since fk(x) = x. This is called a periodic orbit or k-cycle.

For monotonic maps, the following theorem is true:

Theorem A.2. If f is monotonic, then the only possibilities for xt are:
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• xt converges to a fixed point

• xt converges to a 2-cycle

• xt diverges to ±∞ or exhibits unbounded oscillations.

Hence, for monotonic maps, the dynamics is simple.
For non-monotonic maps, the dynamics can be very complicated. As an example, let

us consider the quadratic difference equation

xt+1 = fλ(xt) = λxt(1− xt) , (91)

The two steady states are x = 0 and x∗ = 1 − 1/λ. Stability depends on whether the
derivative of fλ

f ′λ = λ(1− 2x) (92)

evaluated at zero and x∗ are between ±1. In particular, one can show that

Theorem A.3. For the quadratic difference equation (91) with initial condition x0 ∈
[0, 1], we have:

1. for 0 ≤ λ ≤ 1, x = 0 is the unique steady state and is globally stable

2. for λ > 1, the two states x = 0 and x∗ = 1− 1/λ are both fixed points. Moreover,
the state x = 0 is unstable. If λ ≤ 3, the state x∗ is stable and attracts all time
paths.

Another typical effect that can be seen from the quadratic difference map is the
sensitivity dependence to the initial conditions. Slightly different initial conditions can
have dramatic effects on the dynamics of the system. We will not go into the details
here.
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