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Abstract

In this paper we describe some new features of the monotone-preserving cubic
splines and the Hyman’s monotonicity constraint, that is implemented into vari-
ous spline interpolation methods to ensure monotonicity. We find that, while the
Hyman constraint is in general useful to enforce monotonicity, it can be safely omit-
ted when the monotone-preserving cubic spline is considered. We also find that,
when computing sensitivities, consistency requires making some specific assump-
tions about how to deal with non-differentiable locations, that become relevant for
special values of the parameter space.
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1 Introduction

In this paper we review and streamline the content of our previous paper [1], where we
considered one-dimensional interpolation methods that preserve the trend of the input
data points. Useful reviews of various interpolation techniques are e.g. [2, 3, 4, 5]. We
will mostly use [4]1. One key issue is to be able to construct the interpolating function in
such a way that it follows the trend of the data points. This property is usually referred
to as monotonicity-preserving and it helps to remove spurious effects, such as oscillating
behavior.

One of the most famous monotonicity-preserving algorithm was introduced by Hy-
man [8] and can be implemented in principle on almost any cubic-spline-like interpolation
method. In fact, a large class of cubic splines is defined by specifying the vector of deriva-
tives at the input points and the Hyman algorithm works exactly on these derivatives.
In this paper we will focus on one particular spline only, namely the so-called monotone
preserving spline. It is defined as that spline where Hyman’s adjustment is enforced on
top of the Fritsch-Butland prescription [3, 9, 10].

In many practical applications, we are interested in the behavior of the specific inter-
polation method under small changes of the input data. Continuity of the interpolating
function is viewed in terms of small changes in the x-values, while stability is related
to changes in the y-values of the input data. Typically, continuity is guaranteed, so we
will not discuss it here. Instead, we will focus on stability, which is expressed by the
derivative:

∂f(x)

∂fj
(1)

Examples where such a quantity is relevant can be found in many places. For instance,
in many financial application (e.g. portfolio replication and hedging) one needs to use

1The papers [4, 6] have become quite famous within the mathematical finance community, since their
author have introduced a new interpolation method which is deeply intertwined with interest rates,
forward rates, and discount factors. As noted e.g. in [7], this method sometimes produces discontinuous
forward rates.
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the so-called PV01 (present value of one basis point2) or DV01 (dollar value of one basis
point) [11]. In these cases, the input y-values are the interest rates ri given for specific
maturities ti (the x-values), and the associated continuous curve r(t) is known as the
yield curve. In this example, the derivative (1) becomes:

∂r(t)

∂rj
.

The main result of this note is that Hyman’s constraint does not contribute to any
calculation in the monotone-preserving cubic spline framework. In section 2, we define
our set up and fix our notation, which follows [4]. Section 3 contains the main result.
We show explicitly how Hyman’s monotonicity constraint is redundant in the monotone-
preserving cubic spline method. Moreover, we will see that an additional assumption
about how to deal with non-differentiable locations must be included in order to get
the correct answer for the sensitivities. Section 4 contains a summary of the work done
and some conclusions. In Appendix A we show the Excel/VBA code used for testing
purposes.

2 Set up and notation

In this section we review the monotone preserving cubic splines. The main reference are
[4, 6]. We start with a mesh of data points {t1, t2, . . . , tn} (we will think of the x-values as
times) and corresponding values {f1, f2, . . . , fn} for a generic but unknown function f(t).
Cubic splines are generically defined by piece-wise cubic polynomial that pass through
consecutive points:

f(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 , (2)

with t ∈ [ti, ti+1] and i = 1, . . . , n. We will use the following definitions:

hi = ti+1 − ti (3)

mi =
fi+1 − fi

hi
, (4)

with i = 1, . . . , n − 1. The coefficients ai, bi, ci, and di, depends on the details of the
method, and are related to the values of f(t) and its derivatives at the node points. In
general,

ai = f(ti) ≡ fi , bi = f ′(ti) , etc. (5)

where the prime denotes the derivative of the interpolating function f(t) w.r.t. its argu-
ment t. Moreover, given ai and bi, we can express ci and di as follows:

ci =
3mi − bi+1 − 2bi

hi
(6)

di =
bi+1 + bi − 2mi

h2i
. (7)

We can use (2) to compute the derivative

∂f(t)

∂fj
=
∂ai
∂fj

+
∂bi
∂fj

(t− ti) +
∂ci
∂fj

(t− ti)2 +
∂di
∂fj

(t− ti)3 . (8)

21 basis point = 0.01%.
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We have

∂ai
∂fj

= δji (9)

∂mi

∂fj
=

1

hi

(
δji+1 − δ

j
i

)
(10)

∂ci
∂fj

=
1

hi

(
3
∂mi

∂fj
− ∂bi+1

∂fj
− 2

∂bi
∂fj

)
(11)

∂di
∂fj

=
1

h2i

(
∂bi+1

∂fj
+
∂bi
∂fj
− 2

∂mi

∂fj

)
, (12)

which depends on the matrix elements ∂bi
∂fj

. Here δji is the Kronecker delta, which is

equal to one if i = j and zero otherwise.
Due to our previous formulas, once the derivatives at the points, or equivalently the

bi coefficients, are specified, everything else is fixed. In particular, if we are interested

in computing ∂f(t)
∂fj

, then all the work will be in the calculation of the derivatives of bi
w.r.t. fj . This calculation is however tricky if we use monotone preserving splines (or
any other method which enforces monotonicity in a similar fashion), where the bi’s are
non-differentiable functions of the fj ’s (which involve the min and max functions). Let
us consider this case in more detail.

2.1 Monotone preserving cubic splines

Let us start by recalling the formulas for the bi’s in the monotone preserving cubic spline
method as defined in the Hagan-West paper [4]. First of all, at the boundaries:

b1 = 0 , bn = 0 . (13)

For the internal data, if the curve is not monotone at ti, i.e. mi−1 ·mi ≤ 0, then

bi = 0 (if mi−1 ·mi ≤ 0) , (14)

so that it will have a turning point there. Instead, if the trend is monotone at i, i.e.
mi−1 ·mi > 0, one defines

βi =
3mi−1 ·mi

max(mi−1,mi) + 2 min(mi−1,mi)
(15)

and

bi =

{
min (max(0, βi), 3 min(mi−1,mi)) if mi−1, mi > 0
max (min(0, βi), 3 max(mi−1,mi)) if mi−1, mi < 0

(16)

The former choice is made when the curve is increasing (positive slopes), the latter
when decreasing (negative slopes). Equation (16) represents the monotonicity constraint
introduced by Hyman [8] and based on the Fritsch-Butland algorithm [3, 9, 10].

3 The main results

In the case of non-monotonic trend the bi coefficients are zero, and hence also their
derivatives. So we will focus on case of monotonic trend from now on. The main result will
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be that within the framework of the monotone preserving spline the Hyman adjustment
(16) can be omitted, since

bi = βi , (17)

if the trend is monotonic at the node i. As a trivial consequence of (17), one has

∂bi
∂fj

=
∂βi
∂fj

. (18)

As a side result, one finds [1] that, when computing the derivative above, special care is
needed to handle the non-differentiable max and min functions. In fact, if mi = mi−1,
the solution is to average the derivatives of mi and mi−1:

∂

∂fj
max(mi−1,mi) =

1

2

(
∂mi

∂fj
+
∂mi−1

∂fj

)
(19a)

∂

∂fj
min(mi−1,mi) =

1

2

(
∂mi

∂fj
+
∂mi−1

∂fj

)
(19b)

and similarly for the derivatives of the βi’s. This was confirmed in [1] by performing
numerical checks. While (17) is limited to the monotone-preserving algorithm, (19) is
always valid. The remaining of this section is dedicated to proving (17).

3.1 The proof of the main results

Here we recall the relevant formulas that have been worked out in detail in [1].

3.1.1 The Fritsch-Butland prescription

If we denote the denominator of the βi’s with L ≡ max(mi−1,mi) + 2 min(mi−1,mi),
then the derivatives of (15) will be given by:

• ∂βi

∂fi

∂βi
∂fi

=
3

L2
·
(
α
m2
i

hi−1
− β

m2
i−1
hi

)
,

where

α =

{
2 if mi−1 > mi

1 if mi−1 < mi
and β =

{
1 if mi−1 > mi

2 if mi−1 < mi

or explicitly

∂βi
∂fi

=
3

L2
·


2m2

i

hi−1
− m2

i−1

hi
if mi−1 > mi

m2
i

hi−1
− 2m2

i−1

hi
if mi−1 < mi .

(20)

• ∂βi

∂fi−1

∂βi
∂fi−1

= −k · 3

L2
· m

2
i

hi−1
,

where

k =

{
2 if mi−1 > mi

1 if mi−1 < mi ,
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or explicitly
∂βi
∂fi−1

= − 3

L2
· m

2
i

hi−1
·
{

2 if mi−1 > mi

1 if mi−1 < mi .
(21)

• ∂βi

∂fi+1

∂βi
∂fi+1

= k · 3

L2
·
m2
i−1
hi

,

where

k =

{
1 if mi−1 > mi

2 if mi−1 < mi ,

or explicitly
∂βi
∂fi+1

=
3

L2
·
m2
i−1
hi
·
{

1 if mi−1 > mi

2 if mi−1 < mi .
(22)

• ∂βi

∂fj

∂βi
∂fj

= 0 , if j 6= i− 1, i, i+ 1 . (23)

As already mentioned, if mi−1 = mi, then ∂βi

∂fj
will be the average of the answers corre-

sponding to the two options mi−1 < mi and mi−1 > mi.

3.2 The theorem

In this section we will prove that in the locally-monotonic case one has:

bi = βi . (24)

Let us consider the case of local monotonicity at the node i and let us define the following
four regions in the parameter space that are relevant for the Hyman adjustment:

i) βi > 0 and βi < 3 min(mi−1,mi)

ii) βi > 0 and βi > 3 min(mi−1,mi)

iii) βi < 0 and βi > 3 max(mi−1,mi)

iv) βi < 0 and βi < 3 max(mi−1,mi)

The first two region refer to the case of increasing trend (mi,mi−1, bi > 0), while the
remaining two are for the case of decreasing trend (mi,mi−1, bi < 0).

Theorem 1. Given βi as defined in (15), the following statements hold both true

• if mi−1, mi > 0, then βi < 3 min(mi−1,mi);

• if mi−1, mi < 0, then βi > 3 max(mi−1,mi).

6



Proof. The proof is straightforward.
Consider the monotonically increasing case first, mi−1, mi > 0. By working out the

inequality
βi < 3 min(mi−1,mi)

and using the positivity of the denominator in (15), we end up with:

0 < 2 (min(mi−1,mi))
2
. (25)

which is always satisfied.
Similarly, for the monotonically decreasing case mi−1, mi < 0, by working out the

inequality
βi > 3 max(mi−1,mi)

and using the negativity of the denominator in (15), we end up with:

0 < (max(mi−1,mi))
2

+mi−1mi (26)

which is always satisfied.

Theorem 2 (Main Result). In the monotone-preserving cubic spline interpolation method
that uses Hyman monotonicity constraint (15)-(16), if the data trend is locally monotonic
at node i, then we have

bi = βi (27)

else
bi = 0 . (28)

Proof. This follows from the calculation:

bi =

{
min (max(0, βi), 3 min(mi−1,mi)) if mi−1, mi > 0
max (min(0, βi), 3 max(mi−1,mi)) if mi−1, mi < 0

(29)

=

{
min (βi, 3 min(mi−1,mi)) if mi−1, mi > 0
max (βi, 3 max(mi−1,mi)) if mi−1, mi < 0

(30)

=

{
βi if mi−1, mi > 0
βi if mi−1, mi < 0

(31)

= βi . (32)

In going from (29) to (30) we have used the fact that βi is positive (negative) if the trend
is increasing (decreasing), while from (30) to (31) we have used Theorem 1. Hence, in
the case of local monotonicity we are left with

bi = βi . (33)

Therefore, the whole Hyman constraint (16) is completely superfluous in the monotone-
preserving spline and the identity between the derivatives follows trivially:

∂bi
∂fj

=
∂βi
∂fj

, (34)

where the r.h.s. is given by formulas (20)-(23).
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As a general remark, the Hyman constraint (16) is trivial when the βi’s are defined by
the Fritsch-Butland algorithm [10] as in (15). This is what happens for example in the
notation of Hagan and West [4]. The reason for this identity is the fact that the βi’s as
defined by the Fritsch-Butland algorithm already guarantee that the resulting curve will
be monotonic. However, one can still implement the Hyman constraint (16) to ensure
monotonicity in a non-trivial way when different first derivatives βi at the node points
are chosen, and in that case the identities (33) and (34) will not hold anymore.

4 Summary and conclusions

In this paper we have consider monotone preserving interpolation methods and shown
that Hyman’s monotonicity constraint does not contribute within the framework of the
monotone-preserving cubic spline.

However this is generically not true anymore when the Hyman constraint is applied
on any other spline in order to construct a monotonic curve. In fact, in this case Theorem
1 does not need to hold and consequently regions ii) and iv) will in general contribute.
In this case one will need to use to complete formulas for all the four regions.

This result is important for practical as well as conceptual reasons. Moreover this
quantity is important in many areas (e.g. in finance for pricing and for risk management
of interest rate derivatives).
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A Appendix: VBA Code

In this appendix we show the Excel/VBA code that can be used to test our results. Here
we will only reproduce the most important methods. The complete code, together with
a working spreadsheet and examples, can be found at the link http://uglyduckling.

nl/library_files/PRE-PRINT-UD-2014-03_COMPANION-SPREADSHEET.xlsm.
The first step is to compute the bi coefficients. This calculation can be done using

equations (13)-(16) and is implemented into the B Coefficients function. Within this
function one can choose whether to switch on or off the Hyman constraint (16), enclosed
in the HymanConstraint method. If the constraint is turned off, then only the Fritsch-
Butland prescription is used with bi = βi (15). The boolean parameter isHymanEnforced
is used for this purpose and is specified in the initialization method.

Private Function HymanConstraint(index As Integer, b() As Double) As Double

Dim max As Double, min As Double

max = WorksheetFunction.max(m(index), m(index - 1))

min = WorksheetFunction.min(m(index - 1), m(index))

If m(index) > 0 Then

HymanConstraint = WorksheetFunction.min(WorksheetFunction.max(0, b(index)), 3 * min)

End If

If m(index) < 0 Then

HymanConstraint = WorksheetFunction.max(WorksheetFunction.min(0, b(index)), 3 * max)

End If

End Function
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Private Function B_coefficients() As Double()

Dim i As Integer, n As Integer

Dim max As Double, min As Double

If numberOfNodes > 2 Then

n = numberOfNodes - 1

Dim b() As Double

ReDim b(0 To n)

b(0) = 0#

b(n) = 0#

For i = 1 To n - 1

If m(i - 1) * m(i) <= 0 Then

b(i) = 0

Else

max = WorksheetFunction.max(m(i), m(i - 1))

min = WorksheetFunction.min(m(i - 1), m(i))

b(i) = 3 * m(i - 1) * m(i) / (max + 2 * min)

If isHymanEnforced Then

b(i) = HymanConstraint(i, b)

End If

End If

Next i

End If

B_coefficients = b

End Function

A crucial ingredient of the code is the FindLowerIndexWithBinarySearch method,
which performs a search using the binary algorithm and returns the index i of the interval
that contains x, given any input value x, i.e. x ∈ [xi, xi+1). For x values that fall outside
the input range, we use flat extrapolation. We can then compute all the necessary
quantities, such as the length of the relevant interval (3) with method h(i), its slope (4)
with method m(i), and the remaining interpolation coefficients (6) and (7) with methods
c(i) and d(i) respectively. Finally we apply the Interpolate method that computes
the interpolated function for any input value.

Public Function Interpolate(xInput As Double) As Double

Dim yOutput As Double, index As Integer

If numberOfNodes < 3 Then

MsgBox "At least 3 points needed for Monotone Preserving"

Exit Function

End If

If xInput >= xValues(numberOfNodes - 1) Then

yOutput = yValues(numberOfNodes - 1)

ElseIf xInput < xValues(0) Then

yOutput = yValues(0)

Else

index = FindLowerIndexWithBinarySearch(xInput)

yOutput = yValues(index)

+ b(index) * (xInput - xValues(index))

+ C_coefficients(index) * (xInput - xValues(index))^2

+ D_coefficients(index) * (xInput - xValues(index))^3

End If

Interpolate = yOutput

End Function
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