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Abstract

In this paper we describe some new features of Hyman’s monotonicity constraint,
which is implemented into various cubic spline interpolation methods. We consider
the problem of understanding how sensitive such methods are to small changes of the
input y-values and, in particular, how relevant Hyman’s constraint is with respect
to such changes. We find that many things cancel out and that eventually Hyman’s
constraint can be safely omitted when the monotone-preserving cubic spline is used.
We also find that consistency requires including some specific boundary conditions
that become relevant for special values of the parameter space.
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1 Introduction

In this paper we consider one-dimensional interpolation methods that preserve the trend
of the input data points. Many standard papers and books exist on interpolation, and
an overview of the most common methods can be found for example in the Numerical
Recipes book [I], or in the papers by Fritsch and Carlson [2], Hagan and West [3], or
in specialized articles such as the one by Lehmann, Gonner and Spitzer [4]. Preserving
the trend of the data points, or in short preserving the monotonicity, is an important
issue in any interpolation procedure. In fact, often unwanted and unphysical oscillating
behaviour between consecutive points is introduced into the interpolating solution as a
spurious effect of an ineffective method. In order to avoid such spurious contributions,
it is crucial to guarantee that the interpolant follows the behaviour of the data points.
The main monotonicity-preserving algorithm was introduced by Hyman [5] and can
be implemented in principle on almost any cubic-spline-like interpolation method. In
fact, a large class of cubic splines is defined by specifying the vector of derivatives at the
input points. This allows us to have various types of splines, such as the Bessel-Hermite
splines, where the vector of derivatives at each point is computed by using the slope of
the parabola passing through one point before, the point itself, and one point after (the
first three values for the derivative at the first point, and the last three values for the
derivative at the last point), or the monotone preserving spline where Hyman’s constraint
is used on top of the Fritsch-Butland prescription [2] [6] [7]. Even if in principle one can
implement Hyman’s constraint on the Bessel-Hermite splines, in this paper we will focus
on the monotone preserving splines only. A good reference with a survey of other types



of splines, together with some of other popular methods, is Hagan and West [3]|H We
will use this reference often throughout this paper and borrow their notation.

In many practical applications, we are interested in the behavior of the specific in-
terpolation method under small changes of the input data. In particular we focus on
changing the y-values of the input data. Changing the input points, even if of a small
amount, does change the interpolated value corresponding to z-values away from the
input points. Using some notation that will be explained later, the quantity that will be
responsible for describing such a behaviour in our case is simply

9f (x)
f;

which is the derivative of the interpolant with respect to the y-values of the input data.
Mathematically, this quantity is a measure of the quality of the interpolation method in
terms of sensitivity and stability.

In order to provide an example where such a problem becomes relevant, let us consider
a financial application. When dealing with interest rated derivatives, quantities such as
the PVO01 (present value of one basis pointﬂ) or the DVO01 (dollar value of one basis point)
are used for risk management purposes. In these cases, the input y-values are the interest
rates r; given for specific maturities ¢; (the z-values), and the associated continuous curve
r(t) is known as the yield curve. The yield curve is the very basis for computing prices
of financial products, and it is crucial to have a proper interpolation method to estimate
it. Quantities such as the PVO01 are defined exactly in terms of the derivative

or(t)
87“]‘

(1)

of the yield curve with respect to the input rate r;. This derivative also enters the
calculation of the hedging positions for such instruments, hence this is a crucial quantity
for many financial institutions. This situation is discussed in many details in [I0].

This kind of calculation is often done numerically, mainly because the numerical
version is easy to implement while the analytic derivation is cumbersome. However,
the numerical version is only an approximation of the analytic solution, and when large
numbers are involved the differences between the two approaches become important.
Moreover, by working out all the formulas, we were able to find our results.

Our main result is that Hyman’s constraint does not contribute to any calculation in
the monotone-preserving cubic spline framework. This is important for various reasons.
From the practical point of view, this makes calculations much easier and much shorter
and the constraint redundant in this framework. From the conceptual point of view,
Hyman’s recipe includes non-differentiable functions (such as the max and min functions)
whose discontinuous derivatives enter the calculation.

This paper is organized as follows. In section [2] we define our set up and fix our
notation, which follows [3]. Section [3| contains the main result. We show explicitly how
Hyman’s monotonicity constraint is redundant in the monotone-preserving cubic spline
method. Moreover, we will see that an additional boundary condition must be included in

I The papers [3] and [§] have become quite famous within the mathematical finance community, since
their author have introduced a new interpolation method which is deeply intertwined with interest rates,
forward rates, and discount factors. As noted e.g. in [9], this method sometimes produces discontinuous
forward rates.

21 basis point = 0.01%.



order to get the correct answer. In sectiond] we carry out some numerical checks and find
full agreement between the numerical approximation and the analytic formulas. Section
contains a summary of the work done and some conclusions. Finally in Appendix [A]
we add a few remarks about the min and max functions.

2 Set up and notation

In this section we define our set up and fix our notation for the monotone preserving
cubic splines. The main reference are [3] and [§]. Suppose we are given a mesh of data
points {t1,ts,...,t,} (we will think of the z-values as times) and corresponding values
{f1, fa,. -, fu} for a generic but unknown function f(¢). Cubic splines are generically
defined by piecewise cubic polynomial that pass through consecutive points:

f) = ai+bi(t —t:) + ci(t — ;) + di(t — 1), (2)
with ¢ € [t;,t;41] and i = 1,...,n. We will use the following definitions:

hi = ti+1 — ti (3)
Jiv1— fi
R -t 4
with ¢ = 1,...,n — 1. The coefficients a;, b;, ¢;, and d;, depends on the details of the
method, and they are related to the values of f(t) and its derivatives at the node points.
In general,

a; = f(tz) = fz s bz = f/(tl) y etc. (5)

where the prime denotes the derivative of the interpolating function f(t) w.r.t. its ar-
gument t. In particular, the a; coefficients are always determined by the input points.
Moreover, given a; and b;, we can express ¢; and d; as follows:

Smi - bi+1 - QbZ

o= T (6)

We can use to compute the derivative

ng) = g‘}; + g;] (t—1;) + g;; (t—t;)% + g;; (t—1;)3. (8)
We have
- 9
T = g (10)
5~ war o7 %) a
i~ war g %) 2



which depends on g;ﬁ and 82?1. Here 5{ is the Kronecker delta, which is equal to one
J J

if © = j and zero otherwise.

Due to our previous formulas, once the derivatives at the points, or equivalently the
b; coefficients, are specified, everything else is fixed. In particular, if we are interested
in computing aaf—f(:), then all the work will be in the calculation of the derivatives of b;
w.r.t. f;. By locality of the method, we will also expect that if j is far away from 4 then
this derivative will vanish. We will soon see that this is indeed the case. This calculation
is however tricky if we use monotone preserving splines (or any other method which
enforces monotonicity a-la-Hyman [5]), where the b;’s are non-differentiable functions of
the f;’s (which involve the min and max functions). Let us consider this case in more

detail.

2.1 Monotone preserving cubic splines

Let us start by recalling the formulas for the b;’s in the monotone preserving cubic spline
method as defined in the Hagan-West paper [3]. First of all

by =0, b, =0. (13)
If the curve is not monotone at ¢;, i.e. m;_1 - m; < 0, then
bi =0 (1f mi;—1 My S O) s (14)

so that it will have a turning point there.

Note that we have included the case where either m;_1 or m; vanishes in the non-
monotone case. We could have included it in the monotone case as well, but we would
have found b; = 0 anyway.

The monotone case is m;_1 - m; > 0. In this situation we define

3m;_1-m;

= 15
h max(m;_1,m;) + 2min(m;_1,m;) (15)
and
b — min (max(0, 8;), 3min(m;_1,m;)) if m;_1, m; >0 (16)
‘| max (min(0, 8;),3max(m;—1,m;)) if m;_1, m; <0

The former choice is made when the curve is increasing, the latter when decreasing.
Equation represents the monotonicity constraint introduced by Hyman [5] and based
on the Fritsch-Butland algorithm [2, 6] [7]. Going back to our problem of computing Zl})j

we now face a problem: the min and max functions are not differentiable (an explicit
and pedagogical example is given in appendix . We will consider this calculation now
explicitly and we will find that this problem is solved by some cancellations that happen

thanks to the very definition of the Hyman monotonicity constraint.

3 The main results

In this section we carry out explicitly the calculation g;’f. Later on we will show that
J

similar remarks apply to the b; coefficients. In the case of non-monotonic trend the

result is automatically zero and the f8;’s are not even defined. So we will focus on case

of monotonic trend from now on. The main findings are the following;:



e the only non-zero derivatives are
ob; ob; ob;
Ofic1’ ofi’ Ofis1’
and all the others vanish if j £ i —1, 4, i + 1;

(17)

e if m; is equal to m,;_1, then when computing the derivative of we must average
the derivatives of m; and m;_1

0 1 [ Om; (’9mi1)
— max(m;_1,m;) = = + 18a
oy M = 3 (G + T s
o . 1 /0m;  Om;
(r“)ifj mln(mi_l,mi) = 5 <(9fj + 6fj ) (18b)

if my =m;_q;
e the monotonicity constraint does not enter the calculation of the derivative, which
turns out to be given only by the derivative of
ob;  9p;
af; — 9f;’

(19)

for any 7 and j.

The actual statement to prove is the last one. In fact, once we have showed that it
holds true, we can easily convince ourselves of the first statement which is then simple
to prove by explicit calculation. The second statement is nothing else than a boundary
condition that we need to implement in order to get the correct answer out of an ill-defined
situation, while the first one is just about the locality of the method. The remaining of
this section is dedicated to proving our last statement.

3.1 The proof of the main results

In order to be as clear as possible let us make this calculation in small steps correspond-
ing to the various building blocks. The stepping stones of the full calculation are the
expressions 1){’ for g?f and Theorem [2| which are given later.

J

3.1.1 Before the monotonicity constraint

The first step is to compute the the derivatives of the max and min that appear in the
denominator of

0f;
Bmi

— max(m;_1,m;) = .
a7, if mi_q <my

of;

{ omi—y if m;_1 > m;

a7,
Dy

— min(m;_1,m;) = .
a7, if m;_1 > m;

of;

It is now clear that if j # ¢ — 1, ¢, i + 1 these derivatives above all vanish. These

expressions can be used to compute g?? . If we denote the denominator by
J

L = max(m;_1,m;) + 2min(m;_1, m;),

{ Omi_y if mi—1 < m;

by explicit calculation we find:



9B
ofi

k.

af; L2

hmin hmax

where

kE hoi h _ k=-1 ’ hmin = hivhmax =h;1 if mi—1 > My
P T k=1 3 hmin = hifl ; hmax = hz if mi—1 < My,

or explicitly

2m? m2_ .
0B; 3 h?z - Looif my > my
ST 72 20 gm?2 .
dfi L h:n,ll — n;;i_l if mi_1 <m;.
0B
® 9
9B - . 3 m;
O0fi—1 L2 hiq’
where

k= 2 ifmy_1 >my
1 ifm;_q < m; ,

or explicitly

0B, _ _i ) mf ) 2 ifmi_1 >my
(')fi_l L2 hi_1 1 if mi_1 <m;,.
9B;
® Ofin )
0B _ 4 3 M
Ofi1 L2 h;
where

k= 1 if mi_1 >my
- 2 ifmi_1 < m;,

or explicitly

6ﬂz 3 ) mlz_l ) 1 ifmi_1>my
8f7;+1 L? h; 2 ifmi_1 <m;.

9B
* 57

IBi e .
=0, if 1—1,4,i4+1.
a7, J#

0B

B 3 ((max(mil,mi))2 2 (min(m;—1,m;))

(20)

(22)

(23)

In any case, if m;_1 = m;, then 3 7, will be the average of the answers corresponding to

the two options m;_1 < m; and m;_1 > m;.



3.1.2 After the monotonicity constraint

We can now move to the monotonicity constraint. What we need first is

0 0 . 0 ifﬁi<0¢>mi_1,mi<0
87.](‘]’ maX( 761) B g?; if Bz >0 m;_1,m; >0
o . 0 B 0 ifpB;>0&mi_q1,m; >0
gy, min0.8) = SR i B <0 miy,m <0

The final step consists of putting all the information together to compute gj’j .

Suppose first that the trend is increasing, i.e. m;_1,m;, 5; > 0. Using V\;e find:
0b; 0
— = —— min (max(0, 5;),3min(m;_1,m;
5F = oy min(max(0,5), Bmin(m.y mo)

aif- max(0, 5;) if max(0, 8;) < 3min(m;_1,m;)
3% min(m;_1,m;) if max(0,3;) > 3min(m;_1, m;)

{ g?; if B; < 3min(m;_1,m;) (1) (24)

u(s,j) if B; > 3min(m,;_1,m;) (i)

where in the last step we have used the fact that S; is positive and u(i, j) is a function
that depends on the specific values of i and j. Even if the function (i, j) is known and
is trivially given by our previous intermediate formulas, we will not write it explicitly
because -as we will see in a moment- it never contributes to the final answer.

Let us now suppose that the trend is decreasing instead, i.e. m;_1,m;,3; < 0. By

we have:

Ob;
= — max(min(0, 8;), 3max(m;_1, m;
Sr = g s (min(0. ). 3max(mi 1. m,)
% min(0, 5;) if min(0, 8;) > 3 max(m;_1, m;)
B 33%], max(m;_1,m;) if min(0, 5;) < 3max(m;_1,m;)
_ gf;; if 8; > 3max(m;_1,m;) (iii) (25)
v(i ) if B; < 3max(m;_1,m;) (iv)

where in the last step we have used the fact that f; is negative and v(4,j) is a known
function of ¢+ and j which will not contribute to the final answer.

Formulas and depend on which region of the parameter space the parameters
belong to. However, it is possible to show, and we will do it in the next subsection, that
some cancellations occur when checking the boundaries between the regions i) and ii) as
well as between the regions iii) and iv). As a consequence, the final result simplifies and
assumes the more general and better-looking expression

ob; 9B
of;  0f;’
which is always valid. This is the main statement of Theorem |2} which we will prove in

the following subsection. This formula, together with —, completely solves our
problem.

(26)



3.2 The theorem

In this section we want to show that the conditions that define region ii) in and
region iv) in are never satisfied independently of the values of m;_; and m;. We
will start by proving the following theorem.

Theorem 1. Given 3; as defined in , the following statements hold both true
e ifm;_1, m; >0, then 5; < 3min(m;_1,m;);
o ifm;_1, m; <0, then §; > 3max(m;_1,m;).

Proof. The proof is straightforward.
Consider the monotonically increasing case first, m;_1, m; > 0. By working out the
inequality
B; < 3min(m;_1,m;)

and using the positivity of the denominator in , we find:

3m,;_1m1'

< 3 1 . ) -
max(m;_1,m;) + 2min(m;_1,m;) min(m;—1,mi)

0 < 2(min(m;_1,m;)), (27)

where we have used the fact that max(m;_1,m;) - min(m;_1,m;) = m;_1m;. Eq. is
clearly always true.
Similarly, for the monotonically decreasing case m;_1, m; < 0, by working out the
inequality
B; > 3max(m;_1, m;)

and using the negativity of the denominator in , we find:

3m;_1my;

> 3 . Y -
maX(mifl, mz) -+ 2 min(mi,h mz) max(ml 1 mz) 5

0 < (max(m;_1,m;))° +mi_1m;, (28)

where we have used again the fact that max(m;_1,m;) - min(m;_1,m;) = m;_1m;. Eq.
is clearly always true. O

As we wanted to show, the main consequence of Theorem [1}is that regions ii) in
and region iv) in are never reached by any value of the parameters. This result is
important enough to give it its own theorem:

Theorem 2 (Main Result). In the monotone-preserving cubic spline interpolation method
that uses Hyman monotonicity constraint @—@, if the data trend is locally monotonic
at node i, then we have

ob;  9B;

ol ~ o, (29
else .
a7, =0. (30)

Proof. The proof follows immediately from equations (24} and , and Theorem O



3.3 Alternative derivation

So far we have worked at the level of derivatives and proved that, with the §;’s defined
as in , the derivative of the 3;’s with respect to the input nodes are equal to the
derivatives of the b;’s. However, we can get to the same result if we work directly at the
level of the b; and ; coefficients instead of their derivativeﬂ The reasoning is similar
to the previous derivation, but shifted back one step earlier. In such a way we can make
our proof more straightforward.

The starting point is the following theorem:

Theorem 3. In the monotone-preserving cubic spline interpolation method that uses
Hyman monotonicity constraint —@, if the data trend is locally monotonic at node
i, then we have

bi = Bi (31)

else
b; =0. (32)

Proof. This follows from a few observations, on the same lines of Theorem

1. when the trend is increasing at node 4, then §; > 0, while when the trend is
decreasing then (; < 0;

2. the four regions are still defined as before;
3. region ii) and iv) are still empty.

Let’s use these observation into the constraint (16]). We have:

b — min (max(0, 8;), 3min(m;—1,m;)) if m;—_1, m; >0 (33)
v max (min(0, 3;), 3 max(m;_1,m;)) if m;_1, m; <0
B min (Bi,3min(mi_1,mi)) if m;_q, m; >0 (34)
o max (8;, 3max(m;_1,m;)) if m;_1, m; <0
_ Bi if mi—1, m; >0
N { Bi if my—1, m; <0 (35)
= B. (36)

In going from (33]) to we have used observation |1, while from to we have
used observations [2] and [3] as well as the definitions of the four regions. Hence, in the
case of local monotonicity we are left with

bi = 0. (37)
O

Therefore, the whole Hyman constraint is completely superfluous in the monotone-
preserving spline and the identity between the derivatives follows trivially:

ob; 9B,
of;  Of;

3We thank Dmytro Makogon for pointing out this to us.

(38)

10



As a general remark, the Hyman constraint is trivial when the (;’s are defined
by the Fritsch-Butland algorithm [7] as in . This is what happens for example in the
notation of Hagan and West [3]. The reason for this identity is the fact that the 5;’s as
defined by the Fritsch-Butland algorithm already guarantee that the resulting curve will
be monotonic. However, one can still implement the Hyman constraint to ensure
monotonicity in a non-trivial way when different first derivatives (3; at the node points
are chosen, and in that case the identities and will not hold anymore.

4 Numerical checks

In this section we would like to present some evidence on the correctness of our approach.

Recall from section [3] that our main statements are about locality, boundary conditions,
and actual calculation of the derivative 87];. We will address each of them here.

First of all, let us show numerically that the boundary conditions for region ii) and
iv) are never satisfied. Figure [l show the behaviour of the function z(x,y) defined by

Increasing trend

Decreasing trend

"-050
-1-05
u-15-1
u-2-15
252
"-3-25
353

W-4-35

PR
01 -02 -03 04 05 -06 07 08 09 -1 -11 -12 -13 -14 -15
X-Axis

(a) Increasing Trend (b) Decreasing Trend

Figure 1:

(a) This plot shows that z(z,y) = B(z,y) — 3min(z,y) < 0, hence condition 7) in is
always verified.

(b) Similarly this plot shows that z(z,y) = B(z,y) — 3max(z,y) > 0, hence condition
iii) in is always verified.

z(x,y) = B(z,y) — 3min(z,y) (39)
in case of increasing trend (sub-figure x and y are positive), and
Z(.’L'7y) :B(xay) —3max(x,y) (40)

in case of decreasing trend (sub-figure x and y are negative). Here we have defined

Bla,y) = 52y

max(x,y) + 2min(z,y)’ (41)

and (z, y) play the role of (m;_1, m;). Moreover, everything is symmetric under the
exchange of = and y, according to the original Butland’s idea [2, [ [7]. As we can see

11



from the plots, when = and y are positive (increasing trend) z(z,y) is always negative,
or equivalently f(z,y) < 3min(z,y), while when z and y are negative (decreasing trend)
z(z,y) is always positive, or equivalently S(z,y) > 3max(z,y). Hence, the numerical
check confirms what was already proved in Theorem [I] and [2]

Let us now move on to the check of the method itself. We have implemented the
monotone preserving cubic spline method into our library by using numerical methods
and analytic formulas and compared the results with the numerical calculation.

From the analytic side, we use Theorem [2| and formulas — to determine the

value of the derivative g—]{;.

From the numerical side, we compute the derivative g—f by following standard pro-
J
cedures:

e we bump the input data point f; by a small amount +5,
e we bump the input data point f; by a small amount —h,

o we define a new interpolator object initialized with input rates (fi,..., fj+h, ..., fn),
which allows us to compute the interpolated function for any value of ¢, say

ft fi+h)

o we define a new interpolator object initialized with input rates (fi,..., fj—h,..., fa),
which allows us to compute the interpolated function for any value of ¢, say

& fi—h)
e we compute the incremental ratio

af f&fi+h) —ftfi—h)

af; = 2h

This procedure gives an error on the numerical approximation of order O(h?).

The two operations are independent of each other and the agreement is within a very
high accuracy.

In order to deeply understand the nature of such an agreement between the numerical
and the analytic derivative, we need to stress some crucial points:

e the agreement holds either with or without the Hyman monotonicity constraint
(16): this represents a direct numerical check of Theorem [2| and tells us indeed
that Hyman constraint does not play any role in the computation of g—;;

J

e the agreement only works if we include the contribution coming from the
boundary conditions when m;_1 = my;

e the agreement shows that the method is local as expected.

Finally, as far as Theorem [3|is concerned, it is pretty straightforward to test whether
the Hyman constraint within the monotone-preserving spline is redundant or not, since
one just has to comment out the relevant lines of code. Clearly this test is also positive.

12



5 Summary and conclusions

In this paper we have consider monotone preserving interpolation methods and shown
that Hyman’s monotonicity constraint does not contribute within the framework of the
monotone-preserving cubic spline.

However this is generically not true anymore when the Hyman constraint is applied
on any other spline in order to construct a monotonic curve. In fact, in this case Theorem
does not need to hold and consequently regions ii) and iv) will in general contribute.
In this case one will need to use to complete formulas for all the four regions.

This result is important for practical as well as conceptual reasons. Moreover this
quantity is important in many areas (e.g. in finance for pricing and for risk management
of interest rate derivatives). Often such a calculation is done numerically, but it is worth
the effort to get it correctly. As it turns out, Hyman’s constraint is not relevant when
we use the monotone-preserving spline. This result has been derived in the body of the
paper (in particular, in Theorem Theorem [2| and Theorem and checked against
numerical tests.
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Appendix

A Min and max are not differentiable

In this appendix we consider an explicit example to show that the min and max functions
are not differentiable. We take an example from interest rates in finance. Consider figure
It plots two arbitrary yield curves representing the zero rates and the forward rates for
some given dataﬂ Forward rates f(t) are related to zero rate r(t) by the simple formula

£ = 5 (67(0) (12)

where t represents the time to maturity. Figure [3[ plots the min (in red) and max (in
blue) of the same functions. Observe that at the points t* when the two curves are equal,

500 1000 1500 2000 2500 3000 35.00

Figure 2: Rate and forward functions Figure 3: Min and max functions

ie. r(t*) = f(t*), the min and max functions are not differentiable:

dmax<r<t>,f<t>>={ rih) i) > 70 (43)

o £t if () < f(t)
and
i ) i () < f(t)
7 min(r(®), £(1)) —{ F1t) if r(t) > f(t) (44)

This is of course always true: in general, for arbitrary functions fi(x) and fa(x), the
derivatives of max(f, fo) and min(f;, f2) have a discontinuity at the points x* where

fi(@™) = fa(z™).

4The data points are as in [3].
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